Thermodynamic and kinetic anisotropies in octane thin films.

نویسندگان

  • Amir Haji-Akbari
  • Pablo G Debenedetti
چکیده

Confinement breaks the translational symmetry of materials, making all thermodynamic and kinetic quantities functions of position. Such symmetry breaking can be used to obtain configurations that are not otherwise accessible in the bulk. Here, we use computer simulations to explore the effect of substrate-liquid interactions on thermodynamic and kinetic anisotropies induced by a solid substrate. We consider n-octane nano-films that are in contact with substrates with varying degrees of attraction, parameterized by an interaction parameter ϵS. Complete freezing of octane nano-films is observed at low temperatures, irrespective of ϵS, while at intermediate temperatures, a frozen monolayer emerges at solid-liquid and vapor-liquid interfaces. By carefully inspecting the profiles of translational and orientational relaxation times, we confirm that the translational and orientational degrees of freedom are decoupled at these frozen monolayers. At sufficiently high temperatures, however, free interfaces and solid-liquid interfaces close to loose (low-ϵS) substrates undergo "pre-freezing," characterized by mild peaks in several thermodynamic quantities. Two distinct dynamic regimes are observed at solid-liquid interfaces. The dynamics is accelerated in the vicinity of loose substrates, while sticky (high-ϵS) substrates decelerate dynamics, sometimes by as much as two orders of magnitude. These two distinct dynamical regimes have been previously reported by Haji-Akbari and Debenedetti [J. Chem. Phys. 141, 024506 (2014)] for a model atomic glass-forming liquid. We also confirm the existence of two correlations-proposed in the above-mentioned work-in solid-liquid subsurface regions of octane thin films, i.e., a correlation between atomic density and normal stress, and between atomic translational relaxation time and lateral stress. Finally, we inspect the ability of different regions of an octane film to explore the potential energy landscape by performing inherent structure calculations, and observe no noticeable difference between the free surface and the bulk in efficiently exploring the potential energy landscape. This is unlike the films of model atomic glass formers that tend to sample their respective landscape more efficiently at free surfaces. We discuss the implications of this finding to the ability of octane-and other n-alkanes-to form ultrastable glasses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of substrate on thermodynamic and kinetic anisotropies in atomic thin films.

Glasses have a wide range of technological applications. The recent discovery of ultrastable glasses that are obtained by depositing the vapor of a glass-forming liquid onto the surface of a cold substrate has sparked renewed interest in the effects of confinements on physicochemical properties of liquids and glasses. Here, we use molecular dynamics simulations to study the effect of substrate ...

متن کامل

Investigating the thermodynamics and kinetics of thin film reactions by differential scanning calorimetry

In this paper we demonstrate the utility of differential scanning calorimetry for investigating the thermodynamics and kinetics of a broad range of thin film reactions. We begin by describing differential scanning calorimeters and the preparation of thin film samples. We then cite a number of examples that illustrate how enthalpies of crystallization, heats of formation and enthalpies of interf...

متن کامل

Simulation of Fabrication toward High Quality Thin Films for Robotic Applications by Ionized Cluster Beam Deposition

The most commonly used method for the production of thin films is based on deposition of atoms or molecules onto a solid surface. One of the suitable method is to produce high quality metallic, semiconductor and organic thin film is Ionized cluster beam deposition (ICBD), which are used in electronic, robotic, optical, optoelectronic devices. Many important factors such as cluster size, cluster...

متن کامل

Photodegradation of reactive red 222 using TiO2 nanostructured thin films prepared by modified sol-gel method

In this paper, a modified sol-gel method using peroxotitanic acid sol (PTA) was applied for the preparation of TiO2 nanostructured thin films on glass plates. The peroxotitanic acid sol was synthesized using titanium isopropoxide, isopropylalchol, H2O and hydrogen peroxide. TiO2 films were then calcined at 500oC and characterized by X-ray diffraction ...

متن کامل

Crystallization in organic semiconductor thin films: a diffuse-interface approach.

The crystallization of organic semiconductor thin films from an amorphous phase often results in a broad range of microstructures and molecular arrangements that in turn critically impact the electronic properties of the film. Here we present a diffuse-interface model of thin film crystallization that accounts for out-of-plane tilting of the kinetically favored crystalline orientation as well a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 143 21  شماره 

صفحات  -

تاریخ انتشار 2015